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Computational holographic displays typically rely on
time-consuming iterative computer-generated holographic
(CGH) algorithms and bulky physical filters to attain
high-quality reconstruction images. This trade-off between
inference speed and image quality becomes more pro-
nounced when aiming to realize 3D holographic imagery.
This work presents 3D-HoloNet, a deep neural network-
empowered CGH algorithm for generating phase-only holo-
grams (POHs) of 3D scenes, represented as RGB-D images,
in real time. The proposed scheme incorporates a learned,
camera-calibrated wave propagation model and a phase
regularization prior into its optimization. This unique com-
bination allows for accommodating practical, unfiltered
holographic display setups that may be corrupted by var-
ious hardware imperfections. Results tested on an unfiltered
holographic display reveal that the proposed 3D-HoloNet
can achieve 30 fps at full HD for one color channel using
a consumer-level GPU while maintaining image quality
comparable to iterative methods across multiple focused dis-
tances. © 2025 Optica Publishing Group. All rights, including for
text and data mining (TDM), Artificial Intelligence (AI) training, and
similar technologies, are reserved.
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In recent years, augmented reality and virtual reality (AR and
VR) have gradually become popular fields. However, existing
products face issues such as visual-accommodation conflict
(VAC), lack of focus cues, and bulky device form factors. Holo-
graphic imaging is one of the solutions proposed to alleviate
these problems [1,2]. However, the use of bulky optics, in
particular the extra physical filter to cut out partial unwanted
light [3], in recent holographic near-eye display prototypes hin-
ders their miniaturization. The challenge of achieving high
image fidelity in 3D space and in real time without these
systems remains a major obstacle to the widespread adop-
tion of holographic technologies in practical, near-eye display
platforms.

Recently, significant efforts have been directed toward advanc-
ing computer-generated holographic (CGH) algorithms using
artificial intelligence to enhance experimental outcomes [4,5]
and generate three-dimensional (3D) or multi-depth holograms
[6]. A spatial light modulator (SLM) facilitates dynamic holog-
raphy when illuminated by a laser. However, high diffraction

orders (HDOs) and partial unwanted light are inherently present
in all physical processes of optical image formation in holo-
graphic displays, especially when using algorithms such as
double amplitude phase encoding (DPAC), to directly encode
complex holograms into phase-only holograms (POHs) [7].
Although the filtering configuration significantly improves
image quality by mitigating the HDOs, the additional optical
components increase bulk.

To compactly handle the HDOs problem, a high-order
gradient descent (HOGD) method was proposed to mitigate
HDOs algorithmically [8]; however, this method is both time-
consuming and computationally memory-consuming. To facil-
itate POH generation speed, the well-established HoloNet [4]
introduced a convolutional neural network (CNN), and Zhong
et al. [9] further developed a complex-valued CNN, though
these approaches could only produce 2D POHs. Choi et al. [5]
advanced the neural network-based CGH algorithm to 3D holo-
gram generation with unprecedented image quality; however, its
iterative procedure increases runtime. To the best of our knowl-
edge, it remains a challenge to optimally compromise among
algorithm runtime, the quality of 3D holographic imaging, and
unfiltered system form factor simultaneously.

In this Letter, we propose the 3D-HoloNet, a neural network-
empowered CGH algorithm that efficiently synthesizes high-
quality multi-depth holograms without the need for any filtering
system, making it the first non-iterative method to achieve high-
fidelity unfiltered 3D image reconstruction. We demonstrate that
3D-HoloNet achieves superior 3D image quality in real time,
with our experiments on an unfiltered prototype showcasing
excellent results in the green channel and paving the way for
full-color 3D displays with high image quality and a compact
form factor.

We note that the key challenge in diffraction-based hologram
computation lies in computing a hologram based on the inten-
sity distribution of a given object. In our work, we illustrate
that image reconstruction and phase generation are reversible
processes, reflecting the duality nature of forward and backward
wave propagation in holography and can be expressed as follows:

âj
target = f j

forward(ϕ), ϕ̂ = f j
backward(atarget), (1)

where atarget represents the target 3D contents of all planes, âj
target

is the reconstructed image, and ϕ̂ denotes the POH displayed on
the phase-only SLM.
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Fig. 1. Illustration of camera-calibrated learning and 3D-HoloNet training. The pipeline starts with camera-calibrated learning to establish
a forward propagation model that replicates the unfiltered display hardware. This is achieved using L1 between captured and simulated
multi-plane images. The learned forward model then serves as a foundation for training the 3D-HoloNet, enabling backpropagation operation,
a capability not possible with the hardware alone. The total variance (TV) is applied on POHs to smooth it, and L2 is used between the
masked multi-plane images and the simulated output from the forward model.

State-of-the-art neural network-based systems predominantly
employ the vanilla angular spectrum method (ASM) as a
forward model to supervise image reconstruction, which is pop-
ular for effectively computing free-space plane-to-plane wave
propagation, mathematically represented as follows:

f (u, z) =
∬

F(a · eiφ(x,y))ei2π(fxx+fyy+
√︂

1
λ2 −f 2

x −f 2
y z)dfxdfy. (2)

We observe that using the ASM as supervision can lead to a
mismatch between simulation and the physical wave propagation
due to the lack of HDOs and imperfect hardware. Since the
activation maps in CNN-based models are derived from local
convolutions, the POHs often tend to converge to checkerboard-
like patterns [10], requiring a bulky optical filtering module to
remove unwanted high-frequency signals, similar to the case
with DPAC. It is worth noting that by setting the propagation
distance to a negative value, the ASM can also be utilized to
compute backward wave propagation [11]. With this insight, we
design our network to be as similar as possible to the forward
model.

The unified model architecture, as illustrated in Fig. 1, consists
of three sequentially connected components: two U-Nets with an
ideal ASM propagator positioned between them [4]. During the
forward pass, the ASM propagator is composed of eight separate
ASM operations, each corresponding to a distinct propagation
distance, aligned with eight predefined depth planes. Initially,
the first U-Net processes the POHs at the SLM plane, trans-
forming them into a complex field. This complex field is then
propagated through the ASM propagators to eight depth planes.
The resulting complex fields at these target planes are finally
proceeded with the second U-Net, generating the corresponding
amplitude distributions at each plane.

As illustrated in Fig. 1, we prototype an unfiltered holographic
display and train a forward model based on the specific hard-
ware configuration (details are provided in Supplement 1). This
model simulates the input–output relationship, effectively func-
tioning as a differentiable, parameterized proxy of the actual
hardware. In our experiments, POHs generated by various meth-
ods, including SGD, DPAC, and HOGD, are displayed on the

SLM and captured by a camera controlled to focus on eight
target planes.

The forward model is trained using 3000 pairs of POHs and
the corresponding multi-plane captured images, utilizing the L1

loss function and the Adam optimizer. Additional details can be
found at Supplement 1. After training, the learned wave propa-
gation model can predict the captured multi-depth images from a
given POH input. Similar to the ASM-based SGD (SGD-ASM),
the well-trained model allows for high-quality image recon-
struction through iterative optimization of POHs. While the
combination of SGD and the forward model is computationally
demanding and time-intensive, it achieves higher image quality
on the calibrated holographic display. This supervisory role is
critical in guiding the training of the proposed 3D-HoloNet.

3D-HoloNet closely resembles the forward model but intro-
duces a key distinction: it uses a single-distance ASM propa-
gator, unlike the typical eight, positioned between two U-Nets.
It processes an RGB-D image as input, which is first trans-
formed into a masked multi-plane target amplitude. The first
U-Net converts the input into a complex field, and then the
single-distance ASM propagator transfers it to the SLM plane,
enabling far-distance propagation task that is notably difficult for
CNNs [13]. After propagation, the second U-Net converts the
resulting complex field into POHs. This is essentially the inverse
and more efficient process of the forward model, where the POH
is reconstructed by propagating backward from the input target
amplitude.

Specifically, we divide the RGB-D image into eight planes
based on its depth by quantizing each color pixel to the nearest
plane, thereby obtaining multi-plane images. The pixel for each
plane can be expressed as aj(x, y) ∈ RM×N , where j ∈ {1, . . . , 8}
and M and N represent the height and width of the plane,
respectively:

aj(x, y) =

{︄
atarget(x, y), if j = arg mink |zk − D(x, y)|,
0, otherwise,

(3)

where zk indicates the depth of the k-th target plane and D(x, y)
represents the depth at pixel (x, y). The pixel value is set to
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Fig. 2. Comparison of PSNR (dB) ↑, SSIM ↑, and frame rate (fps)
↑ of captured results from varying 3D CGH algorithms, including
our implementation of the 3D version of DPAC method (3D-DPAC)
[7,12], the SGD solver using the vanilla ASM (3D-SGD-ASM) [5],
and the SGD solver using a learnable wave propagation model (3D-
SGD-CNNpropCNN) [5]. Testing scenes are shown in Fig. 3 and
Supplement 1.

zero on all other seven planes. In our framework, a stack
of eight masks is computed for eight target planes, equally
spaced in dioptric space, with distances from the camera set
to 0.000, 0.084, 0.141, 0.243, 0.317, 0.416, 0.532, and 0.611
diopters

(︁
m−1

)︁
. This design choice is based on the visual clarity

of the human visual system in perceiving a maximum of 0.31
diopter inter-plane spacing, as explored in the prior work [5,14].

The total loss function is thereby a combination of the pre-
trained forward model fforward, L2 loss, and total variation (TV)
loss, which could be formulated as follows:

L =

J∑︂
j=1

∥︁∥︁ŝ · f j
forward

(︁
f3D-HoloNet(atarget)

)︁
− aj

target

∥︁∥︁2
+ λ ∥∇ϕ∥2

where ŝ = arg mins∥s · arecon − atarget∥
2
2 .

(4)

Herein, ŝ ∈ R1 is a scaling factor for laser intensity that accounts
for potential differences in value ranges between the captured
and target amplitudes [5]. ϕ represents POH and λ represents

Fig. 3. Experimental results on the unfiltered holography setup with PSNR (dB)/SSIM metrics of various CGH algorithms. For fair
comparison, the mean amplitude of all results is scaled to match that of the target image. We convert all displayed results to gray scale
for visualization purposes. Red boxes highlight the in-focus regions. Specifically, the camera is focused at the near plane (0.55 m from the
camera) for the first and the third rows, while at the far plane (1.74 m from the camera) for the second row.

the weight of TV loss, which is used to suppress the variance
between neighboring pixels in the phase. Additional details for
3D-HoloNet can be found at Supplement 1.

Figure 2 presents the experimental performance of existing
CGH algorithms without filtering, evaluated in peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and
frame rate, averaged over a small set of images. The inference
time is measured using torch.cuda.Event with synchronized
GPU timing on an NVIDIA 4090 GPU to ensure accuracy.
The well-established DPAC algorithm, although simple and
fast, shows the worst reconstruction quality due to the inher-
ent high-frequency amplitude copies that necessitate an extra
physically filtering process. Moreover, the 3D-DPAC requires
multiple ASM propagation operations to calculate the com-
plex field at the SLM plane, significantly increasing the runtime
compared with the 2D-DPAC. Iterative methods, such as SGD-
ASM [4], offer advantages in unfiltered systems by incorporating
reconstruction feedback during the optimization process. In par-
ticular, the 3D-SGD-CNNpropCNN method outperforms the
vanilla 3D-SGD-ASM as is tailored to the specific hardware,
although requiring more iterations to optimize POHs. The per-
formance gap between these two methods in our implementation
is smaller compared to that reported by Peng et al. [4]. This is
likely because our setup, without any filters, retains more high-
frequency components, which is challenging for the CNN to
learn and therefore lower the performance of the forward model.

3D-HoloNet presents a remarkable balance between high-
quality reconstruction and fast runtime, making it a significant
advancement over prior algorithms that typically struggle to
achieve both simultaneously. It offers the highest reconstruction
quality among direct methods and even surpasses the iterative
method SGD-ASM in terms of output fidelity. Regarding speed,
3D-HoloNet is much faster than the iterative methods, achieving
real-time performance. This enables it to handle 29 frames per
second, making it well-suited for real-time applications without
compromising the quality of reconstruction.

Figure 3 showcases the multi-plane captured results with
unfiltered 3D visuals. The 3D-DPAC method struggles to recon-
struct coherent images in an unfiltered holographic system.
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Fig. 4. Captured unfiltered holographic display results of 3D-
HoloNet and HOGD. The multi-plane results of 3D-HoloNet are
superimposed to a single plane for visual comparison. The ability
of 3D-HoloNet to handle HDOs is proven better than HOGD both
qualitatively and quantitatively. Full test images are provided in
Supplement 1.

Fig. 5. Ablation on the TV loss in experiments. To facilitate com-
parison, the experimental results are aggregated into a single focal
plane accompanied by a zoomed-in section. Architectural details
are more accurately reconstructed with the TV loss. Additionally,
the phase exhibits greater structure in large scale, and the high fre-
quency of neighboring pixels is reduced, as demonstrated in the
zoomed-in phase view.

Although PSNR and SSIM metrics of the two SGD-based meth-
ods are slightly higher, they fail to address the noticeable speckle
artifacts without filter. These artifacts are aesthetically displeas-
ing and can diminish visual clarity. In contrast, 3D-HoloNet
leads to reconstructed images with fewer speckle artifacts. This
cleaner appearance can enhance visual comfort, making 3D-
HoloNet more suitable for applications that require high-quality
holographic representations.

Figure 4 compares our captured results with HOGD, which is
a competitive unfiltered POH optimization algorithm [8]. Ours
achieves superior image quality while requiring significantly less
runtime and computation resources. For the 3D-HoloNet results,
we aggregate the multi-plane captured data into a single focus
plane to facilitate comparison with HOGD, as HOGD is too
CUDA memory-intensive to implement in 3D on a consumer-
grade GPU.

Figure 5 illustrates the results of an ablation study on TV
loss. Incorporating TV loss effectively reduces high-frequency
noise and results in a more structured phase. It penalizes large
variance between neighboring pixels in the POH, reducing the

abrupt black and white pixel transitions, which is challenging
for SLM to reproduce due to the electronic cross talk. The inten-
sity images enhanced with TV loss appear visually clearer in
the captured data and reconstruct finer details, demonstrating
improved performance across various metrics.

In summary, the proposed 3D-HoloNet demonstrates the
feasibility of using a single unified model to simultaneously rep-
resent both forward and backward wave propagation. Notably,
its inverse network model can generate 3D holograms in real
time with comparable reconstruction quality while operating
similar speed as the 3D-DPAC method. Furthermore, by incor-
porating the camera-calibrated forward model and a TV loss
into the optimization, 3D-HoloNet effectively handles HDOs,
surpassing the baseline iterative SGD-ASM. With a reasonable
amount of engineering effort in neural network compression
and GPU processing optimization [15], the runtime can be
further decreased. At this proof-of-concept stage, we have
only experimentally verified the proposed pipeline using the
green light source. Although it can be easily extended to
full color by training three 3D-HoloNets with different wave-
lengths, future work could enhance this by jointly optimizing all
three channels within a single model. Further employing time-
multiplexing techniques for RGB visualization, the HDO prob-
lem, speckle artifacts, and alternative noise can be effectively
mitigated.
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