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Abstract 
Computational holography faces challenges in balancing speed 
and quality, especially for 3D content. This work presents 3D-
HoloNet, a deep learning framework that generates phase-only 
holograms from RGB-D scenes in real time. The method integrates 
a learned wave propagation model calibrated to physical displays 
and a phase regularization strategy, enabling robust performance 
under hardware imperfections. Experiments show the system 
achieves 30 fps at full-HD resolution (single-color channel) on 
consumer GPUs while matching iterative methods in 
reconstruction quality across multiple focal planes. By eliminating 
iterative optimization and physical filtering, 3D-HoloNet addresses 
the critical speed-quality trade-off in unfiltered holographic 
displays. 
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1. Introduction
In recent years, augmented reality (AR) and virtual reality (VR) 
have emerged as rapidly growing fields. Despite their popularity, 
existing devices are often plagued by challenges such as visual-
accommodation conflict (VAC), insufficient focus cues, and bulky 
form factors. Holographic imaging has been proposed as a potential 
solution to address these issues [1]. However, the reliance on bulky 
optical components—particularly the use of additional physical 
filters to suppress unwanted light [3] in current holographic near-
eye display prototypes poses significant barriers to miniaturization. 
Achieving high-fidelity 3D imaging in real time without relying on 
such systems remains a critical hurdle for the practical adoption of 
holographic technologies in compact, near-eye display platforms. 

In recent years, considerable progress has been made in leveraging 
artificial intelligence to advance computer-generated holography 
(CGH) algorithms, improving experimental outcomes [4,5] and 
enabling the generation of three-dimensional (3D) or multi-depth 
holograms [6]. Dynamic holography is made possible by the spatial 
light modulator (SLM) when illuminated by a laser. However, the 
formation of holographic images is inherently accompanied by 
high diffraction orders (HDOs) and unwanted light, which are 
particularly prominent in physical optical systems. These issues 
become more pronounced with algorithms like double-phase 
amplitude encoding (DPAC), which directly convert complex 
holograms into phase-only holograms (POHs) [7]. While filtering 
configurations can effectively reduce HDOs and enhance image 
quality, the inclusion of additional optical components inevitably 
adds to the system’s bulk. 
To address the issue of high diffraction orders (HDOs) in a more 
compact manner, the high-order gradient descent (HOGD) method 
was introduced as an algorithmic solution [8]. However, this 
approach is both computationally intensive and memory 
demanding. To accelerate the generation of phase-only holograms 
(POHs), the widely recognized HoloNet [4] incorporated a 
convolutional neural network (CNN), while Zhong et al. [9] 
extended this concept by proposing a complex-valued CNN. 
Despite these advancements, both methods are limited to producing 
2D POHs. Choi et al. [5] further advanced neural network-based 
CGH algorithms to support 3D hologram generation, achieving 
unprecedented image quality. However, their iterative procedure 
significantly increases runtime [15]. To the best of our knowledge, 
achieving an optimal balance among algorithm efficiency, 3D 
holographic image quality, and the form factor of unfiltered 
systems remains an unresolved challenge. 

Figure 1 Illustration of camera-calibrated learning and 3D-HoloNet training. The pipeline starts with camera-calibrated learning 
to establish a forward propagation model that replicates the unfiltered display hardware. This is achieved using 𝓛𝟏between 
captured and simulated multi-plane images. The learned forward model then serves as a foundation for training the 3D-HoloNet, 
enabling back-propagation operation, a capability not possible with the hardware alone. The total variance (TV) is applied on 
POHs to smooth it, and 𝓛𝟐 is used between the masked multi-plane images and the simulated output from the forward model. 
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We introduce 3D-HoloNet, a neural network-driven CGH 
algorithm capable of efficiently generating high-quality multi-
depth holograms without requiring any filtering system, making it 
the first non-iterative approach to achieve high-fidelity 3D image 
reconstruction in unfiltered setups. Our experiments with an 
unfiltered prototype demonstrate that 3D-HoloNet delivers 
outstanding 3D image quality in real-time, particularly in the green 
channel, laying the foundation for full-color 3D displays with 
superior image quality and a compact design. 

2. Methodology 
We note that the key challenge in diffraction-based hologram 
computation lies in computing a hologram based on the intensity 
distribution of a given object. In our work, we illustrate that image 
reconstruction and phase generation are reversible processes, 
reflecting the duality nature of forward and backward wave 
propagation in holography, and can be expressed as: 

𝑎#target 
# = 𝑓forward 

# (𝜙), 𝜙* = 𝑓backward 
# +𝑎target , 

where 𝑎target  represents the target 3D contents of all planes, 
𝑎#target	 is the reconstructed image, and ϕ/  denotes the POH 
displayed on the phase-only SLM.  
State-of-the-art neural network-based systems predominantly 
employ the vanilla angular spectrum method (ASM) as a forward 
model to supervise image reconstruction, which is popular for 
effectively computing free-space plane-to-plane wave propagation, 
mathematically represented as: 

𝑓(𝑢, 𝑧) =2𝐹+𝑎 ⋅ 𝑒)*(,,.),𝑒
)0123!,43".45

6
7#83!
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We observe that using the ASM as supervision can lead to a 
mismatch between simulation and the physical wave propagation 
due to the lack of HDOs and imperfect hardware. Since the 
activation maps in CNN-based models are derived from local 
convolutions, the POHs often tend to converge to checkerboard-
like patterns [10], requiring a bulky optical filtering module to 
remove unwanted high-frequency signals, similar to the case with 
DPAC. It is worthy noting that by setting propagation distance to a 
negative value, the ASM can also be utilized to compute backward 
wave propagation [11]. With this insight, we design our network to 
be as similar as possible to the forward model.  
The unified model architecture, as illustrated in Figure 1 consists 
of three sequentially connected components: two U-Nets with an 
ideal ASM propagator positioned between them [4]. During the 
forward pass, the ASM propagator is composed of 8 separate ASM 
operations, each corresponding to a distinct propagation distance, 
aligned with 8 predefined depth planes. Initially, the first U-Net 
processes the POHs at the SLM plane, transforming them into a 
complex field. This complex field is then propagated through the 
ASM propagators to 8 depth planes. The resulting complex fields 
at these target planes are finally proceeded with the second U-Net, 
generating the corresponding amplitude distributions at each plane.  
As shown in Figure 1, we develop a prototype unfiltered 
holographic display and train a forward model tailored to the 
specific hardware configuration. This model accurately simulates 
the input-output relationship, serving as a differentiable and 

Figure 2 Comparison of PSNR (dB)↑, SSIM↑, and frame rate↑ 
of captured results from varying 3D CGH algorithms, including 
our implementation of the 3D version of DPAC method (3D-
DPAC) [7, 12], the SGD solver using the vanilla ASM (3D-
SGD-ASM) [5], and the SGD solver using a learnable wave 
propagation model (3D-SGD-CNNpropCNN) [5]. 

Figure 3 Experimental results on the unfiltered holography setup with PSNR (dB) / SSIM metrics of various CGH algorithms. For 
fair comparison, the mean amplitude of all results is scaled to match that of the target image. We convert all displayed results to 
grayscale for visualization purpose. Red boxes highlight the in-focus regions. Specifically, the camera is focused on the near 
plane (0.55~m from camera) for the first and the third rows, while at the far plane (1.74~m from camera) for the second row. 
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parameterized proxy for the physical hardware. In our experiments, 
phase-only holograms (POHs) generated by different methods, 
including SGD, DPAC, and HOGD, are displayed on the SLM and 
captured by a camera set to focus on eight target planes. 
The forward model is trained on 3,000 pairs of phase-only 
holograms (POHs) and their corresponding multi-plane captured 
images using the ℒ6loss function and the Adam optimizer. Once 
trained, the model can predict captured multi-depth images from a 
given POH input. Similar to the ASM-based SGD (SGD-ASM), the 
well-trained model enables high-quality image reconstruction 
through iterative optimization of POHs. Although combining SGD 
with the forward model is computationally intensive and time-
consuming, it delivers superior image quality on the calibrated 
holographic display. This supervisory role is essential for guiding 
the training process of the proposed 3D-HoloNet.  
3D-HoloNet shares similarities with the forward model but 
introduces a significant difference: it employs a single-distance 
ASM propagator, as opposed to the conventional eight, 
strategically placed between two U-Nets. The network takes an 
RGB-D image as input, which is first converted into a masked 
multi-plane target amplitude. The first U-Net transforms this input 
into a complex field, which is then propagated to the SLM plane 
using the single-distance ASM propagator. This enables far-
distance propagation, a task that CNNs typically struggle with [13]. 
After propagation, the second U-Net converts the resulting 
complex field into phase-only holograms (POHs). This approach 
represents a more efficient, inverse process of the forward model, 
reconstructing POHs by back-propagating from the target 
amplitude. 
In our framework, a set of eight masks is computed for eight target 
planes, distributed evenly in dioptric space with distances of 0.000, 
0.084, 0.141, 0.243, 0.317, 0.416, 0.532, and 0.611 diopters from 
the camera. This configuration is informed by the human visual 
system’s ability to perceive inter-plane spacing of up to 0.31 
diopters, as investigated in prior research [5, 14]. 
The total loss function is thereby a combination of the pre-trained 

forward model 𝑓3<=>?=@ , ℒ0  loss, and total variation (TV) loss, 
which could be formulated as:  

ℒ =9 
A

#B6

;𝑠̂ ⋅ 𝑓forward 
# >𝑓CD8 HoloNet +𝑎target ,? − 𝑎target 

# ;
0
+ 𝜆‖∇𝜙‖0

 where 𝑠̂ = arg𝑚𝑖𝑛
E

K𝑠 ⋅ 𝑎recon − 𝑎target K0
0.

 

Herein, s#  ∈  R𝟙 is a scaling factor for laser intensity that accounts 
for potential differences in value ranges between the captured and 
target amplitude [5]. The ϕ represents POH and λ represents the 
weight of TV loss, which is used to suppress the variance between 
neighboring pixels in the phase.  

3. Results 
Figure 2 illustrates the experimental performance of various CGH 
algorithms without filtering, evaluated using peak signal-to-noise 
ratio (PSNR), structural similarity index (SSIM), and frame rate, 
averaged over a small set of images. The inference time is precisely 
measured with torch.cuda.Event and synchronized GPU timing on 
an NVIDIA 4090 GPU to ensure accuracy. The well-known DPAC 
algorithm, while straightforward and fast, exhibits the lowest 
reconstruction quality due to inherent high-frequency amplitude 
copies that necessitate additional physical filtering. Furthermore, 
3D-DPAC requires multiple ASM propagation operations to 
compute the complex field at the SLM plane, leading to 
significantly longer run-times compared to 2D-DPAC. Iterative 
approaches like SGD-ASM [4] perform better in unfiltered systems 
by utilizing reconstruction feedback during optimization. 
Specifically, the 3D-SGD-CNNpropCNN method surpasses the 
standard 3D-SGD-ASM by tailoring the process to specific 
hardware, though it requires more iterations to optimize POHs. The 
performance gap between these two methods in our 
implementation is smaller than that reported by Peng et al. [4]. This 
discrepancy is likely due to our unfiltered setup, which retains more 
high-frequency components that are difficult for the CNN to learn, 
thereby reducing the effectiveness of the forward model. 
The 3D-HoloNet achieves an impressive balance between high-
quality reconstruction and fast runtime, representing a significant 
improvement over previous algorithms that often fail to excel in 
both aspects simultaneously. It delivers the highest reconstruction 
quality among direct methods and even outperforms the iterative 
SGD-ASM method in output fidelity. In terms of speed, 3D-
HoloNet is significantly faster than iterative approaches, achieving 
real-time performance by processing 29 frames per second. This 
makes it highly suitable for real-time applications while 
maintaining excellent reconstruction quality.  
Figure 3 presents the multi-plane captured results of unfiltered 3D 
visuals. The 3D-DPAC method struggles to produce coherent 
reconstructions in an unfiltered holographic setup. While the PSNR 
and SSIM metrics of the two SGD-based methods are slightly 
higher, they fail to mitigate the prominent speckle artifacts in the 
absence of a filter. These artifacts not only detract from the 
aesthetic appeal but also reduce visual clarity. In contrast, 3D-
HoloNet achieves reconstructed images with significantly fewer 
speckle artifacts, resulting in a cleaner and more visually 
comfortable appearance. This makes 3D-HoloNet particularly 
well-suited for applications requiring high-quality holographic 
imaging.  
Figure 4 compares our captured results with HOGD, a competitive 
unfiltered POH optimization algorithm [8]. Our approach delivers 
superior image quality while significantly reducing runtime and 

Figure 4 Captured unfiltered holographic display results of 
3D-HoloNet and HOGD. The multi-plane results of 3D-
HoloNet are superimposed to single plane for visual 
comparison. The ability of 3D-HoloNet to handling HDOs is 
proven better than HOGD. 
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computational resource requirements. For the 3D-HoloNet results, 
we aggregate the multi-plane captured data into a single focus plane 
to enable comparison with HOGD, as HOGD’s high CUDA 
memory demands make 3D implementation on a consumer-grade 
GPU infeasible. 
Figure 5 presents the results of an ablation study on the inclusion 
of TV loss. Incorporating TV loss effectively reduces high-
frequency noise, resulting in a more structured phase. It penalizes 
large variations between neighboring pixels in the POH, thereby 
mitigating abrupt black-and-white pixel transitions that are 
challenging for SLMs to reproduce due to electronic crosstalk. The 
intensity images enhanced with TV loss appear visually sharper in 
the captured data and better reconstruct fine details, demonstrating 
improved performance across multiple evaluation metrics. 

4. Discussions 
In conclusion, the proposed 3D-HoloNet demonstrates the potential 
of utilizing a unified model to simultaneously represent forward 
and backward wave propagation. Its inverse network efficiently 
generates 3D holograms in real time, achieving reconstruction 
quality comparable to iterative methods while maintaining a speed 
like the 3D-DPAC approach. By integrating a camera-calibrated 
forward model and TV loss into the optimization process, 3D-
HoloNet effectively addresses high diffraction orders (HDOs), 
outperforming the baseline iterative SGD-ASM method.  With 
further neural network compression and GPU optimization [2], its 
runtime can be further reduced. This proof-of-concept has been 
validated using a green light source, and it can be extended to full-
color imaging by training separate models for different 
wavelengths or jointly optimizing all channels in one model. 
Additionally, time-multiplexing techniques for RGB visualization 
could address HDOs, speckle artifacts, and other noise, enhancing 
its practical applicability. 

5. Acknowledgements 
This work was partially supported by the NSFC Excellent Young 
Scientist Fund (62322217) and the Research Grants Council of 
Hong Kong (ECS 27212822, GRF 17208023). 

6. References 
1. Jang C, Bang K, Chae M, et al. Waveguide holography for 

3D augmented reality glasses[J]. Nature Communications, 
2024, 15(1): 66. 

2. Polino A, Pascanu R, Alistarh D. Model compression via 
distillation and quantization[J]. arXiv preprint 
arXiv:1802.05668, 2018. 

3. Kuo G, Schiffers F, Lanman D, et al. Multisource 
holography[J]. ACM Transactions on Graphics (Tog), 2023, 
42(6): 1-14. 

4. Peng Y, Choi S, Padmanaban N, et al. Neural holography 
with camera-in-the-loop training[J]. ACM Transactions on 
Graphics (TOG), 2020, 39(6): 1-14. 

5. Choi S, Gopakumar M, Peng Y, et al. Neural 3D holography: 
learning accurate wave propagation models for 3D 
holographic virtual and augmented reality displays[J]. ACM 
Transactions on Graphics (TOG), 2021, 40(6): 1-12. 

6. Sui X, He Z, Chu D, et al. Non-convex optimization for 
inverse problem solving in computer-generated 
holography[J]. Light: Science & Applications, 2024, 13(1): 
158. 

7. Shi L, Li B, Kim C, et al. Towards real-time photorealistic 
3D holography with deep neural networks[J]. Nature, 2021, 
591(7849): 234-239. 

8. Gopakumar M, Kim J, Choi S, et al. Unfiltered holography: 
optimizing high diffraction orders without optical filtering 
for compact holographic displays[J]. Optics letters, 2021, 
46(23): 5822-5825.  

9. Zhong C, Sang X, Yan B, et al. Real-time high-quality 
computer-generated hologram using complex-valued 
convolutional neural network[J]. IEEE Transactions on 
Visualization and Computer Graphics, 2023. 

10. Sugawara Y, Shiota S, Kiya H. Checkerboard artifacts free 
convolutional neural networks[J]. APSIPA Transactions on 
Signal and Information Processing, 2019, 8: e9. 

11. Zhou W, Meng X, Qu F, et al. 59‐4: Towards Real‐time 3D 
Computer‐Generated Holography with Inverse Neural 
Network for Near‐eye Displays[C]//SID Symposium Digest 
of Technical Papers. 2024, 55(1): 817-820. 

12. Maimone A, Georgiou A, Kollin J S. Holographic near-eye 
displays for virtual and augmented reality[J]. ACM 
Transactions on Graphics (Tog), 2017, 36(4): 1-16. 

13. Yu T, Zhang S, Chen W, et al. Phase dual-resolution 
networks for a computer-generated hologram[J]. Optics 
Express, 2022, 30(2): 2378-2389. 

14. Campbell F W. The depth of field of the human eye[J]. 
Optica Acta: International Journal of Optics, 1957, 4(4): 157-
164. 

15.   Zhou W, Qu F, Meng X, et al. 3D-HoloNet: fast, unfiltered, 
3D hologram generation with camera-calibrated network 
learning[J]. Optics Letters, 2025, 50(4): 1188-1191. 

Figure 5 Ablation on the TV loss in experiments. To facilitate 
comparison, the experimental results are aggregated into a 
single focal plane accompanied by a zoomed-in section. 
Architectural details are more accurately reconstructed with 
the TV loss. Additionally, the phase exhibits greater structure 
in large-scale, and the high frequency of neighboring pixels 
is reduced, as demonstrated in the zoomed-in phase view. 

83-4 / F. Qu • Invited Paper  

SID 2025 DIGEST • 1146 

 21680159, 2025, 1, D
ow

nloaded from
 https://sid.onlinelibrary.w

iley.com
/doi/10.1002/sdtp.18380 by U

niversity of H
ong K

ong L
ibraries, W

iley O
nline L

ibrary on [09/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




