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Abstract 
Holography enhances VR and AR displays by providing realistic 

3D imagery, but current computer-generated hologram (CGH) 

algorithms face high computational demands. This work presents 

an efficient hologram generation and compression method using a 

pre-trained wave propagation model and a filter-free design. The 

approach reduces data redundancy, simplifies hardware, and 

achieves near real-time decoding, enabling practical use in 

compact AR/VR systems. 
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1. Introduction
Computer-generated holography (CGH) has emerged as a

technology in virtual and augmented reality (VR/AR), offering true

3D vision that enhances immersive experiences. Its ability to

accurately render depth and perspective makes it a promising

candidate for next generation display systems [1, 2]. Recent

advancements in deep learning have been instrumental in

improving holographic display quality and accelerating hologram

generation, addressing some of the computational challenges

associated with CGH [3, 4].

However, practical deployment of CGH faces several critical 

challenges. High-resolution holograms require substantial data 

volumes, which impose significant computational demands. 

Efficient compression methods are necessary to reduce data 

transmission and storage requirements without compromising the 

quality of reconstructed holographic images [5]. Moreover, the 

mismatch between simulated holographic images and their optical 

display counterparts often leads to sub-optimal visual quality, 

limiting the effectiveness of CGH in real-world applications [3]. 

Efforts have been made to address this issue alongside 

advancements in compact form factor displays that eliminate the 

need for additional filtering systems [6].  

Traditional approaches, including video codecs like HEVC and 

JPEG, have been adapted for hologram compression [7]. These 

methods, illustrated in Figure 1(b), encode holograms using 

conventional video codecs. However, as these codecs are primarily 

designed for natural images, they often result in quality degradation 

when applied to holographic data. Neural network-based 

techniques, shown in Figure 1(c), have recently emerged as a 

promising alternative, demonstrating improved compression 

performance [8, 9]. This includes our proposed method, which 

optimizes phase-only holograms for low bitrate and high quality 

while maintaining a lightweight decoding process, making it 

suitable for edge devices. In contrast, Figure 1(a) is an alternative 

approach where the target image is compressed using standard 

codecs, and the hologram is inferred at the edge device. This 

method places a heavy computational burden on the edge side. 

While neural network-based techniques address many of these 

issues, they still face challenges in adapting to real optical display 

conditions and leave room for further improvements in 

compression efficiency. 

This work addresses these gaps by presenting an end-to-end 

framework that integrates hologram generation and compression 

using a pre-trained, camera-calibrated wave propagation model. 

This model ensures high display fidelity while optimizing for RGB 

input, enabling practical and efficient solutions for next-generation 

holographic displays. 

2. Joint Hologram Generation and Compression

We propose a neural network framework as shown in Figure 2 for 

training phase-only hologram (POH) generation and compression 

for holographic near-eye displays. The proposed framework 

integrates hologram generation and compression to enable efficient 

phase-only hologram generation and transmission.  

Phase Hologram Generation: Our proposed network predicts 

the phase-only hologram 𝜙, enabling the desired target amplitude 

𝐴𝑡 at the target plane. To reduce inter-color-channel redundancy,

we use the RGB channels as the input of our network. The initial 

U-Net [10] predicts the phase distribution 𝜃𝑡 from 𝐴𝑡, forming a

complex field, which is backward-propagated to the spatial light

modulator (SLM) plane using angular spectrum method (ASM)

propagation, 𝑃−𝑑. The three-color channels, processed separately

due to their wavelength dependency, are jointly handled by the

network. This approach generates six components (real and

imaginary parts for each channel), which are then encoded into a

latent representation 𝑦. The encoder effectively captures critical

Figure 1 Comparison of hologram generation and 

transmission schemes: (a) Target image compression using 

image codecs leads to high computational load during 

hologram inference. (b) Holograms encoded with video 

codecs suffer quality degradation. (c) The proposed method 

optimizes phase-only holograms for low bitrate and high 

display quality, enabling a lightweight edge solution. 
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information from the complex field, providing a compact structure 

for efficient compression. To balance performance and complexity, 

we propose two network scales, the proposed model and a version 

with reduced feature channels of the network denoted as proposed-

small. The latent variable y is decoded into a complex wavefield 

and constrained to a phase-only representation for the SLM. The 

POH 𝜙  is reconstructed using forward ASM wave propagation, 

optimized by minimizing the distortion metric between the 

simulated amplitude 𝐴̂𝑡 and the target amplitude 𝐴𝑡.  

Phase Hologram Compression: The compression pipeline 

compresses holographic data by quantizing the latent feature 𝑦 

using a quantization operator, enabling efficient data compression 

similar to learned image compression frameworks [11, 12]. To 

enhance compression, entropy coding is applied to the quantized 

feature 𝑦̂, requiring a probability model for effective encoding. A 

hyperprior model, introduced by Balle et al. [11], captures spatial 

dependencies in 𝑦 through side information 𝑧. This improves the 

entropy model, allowing nearly lossless compression using 

arithmetic coding. The system is optimized with a rate-distortion 

loss, expressed as: 

 

𝐿 = 𝐸𝐴𝑡∼𝑝(𝐴𝑡)[− log2 𝑝𝑦̂(𝑦̂) − log2 𝑝𝑧̂(𝑧̂) + 𝜆𝐿𝐷(𝐴𝑡 , 𝐴̂𝑡)], (1) 

 

where 𝑝𝑦̂(𝑦̂) and 𝑝𝑧̂(𝑧̂) represent the probabilities of the quantized 

latent 𝑦̂ and side information 𝑧̂ , balancing compression rate and 

reconstruction quality through the distortion term 𝐿𝐷. Our model 

design leverages the hyperprior encoder and decoder architectures 

from ELIC [12], excluding the space-channel context model to 

achieve a lightweight and efficient structure. 

The propagation, 𝑓𝑑 , as shown in Figure 2, can be implemented 

with the ASM propagation, but we can also employ a modified 

camera-calibrated, learned wave propagation model to address 

mismatches between simulated images and physical displays. This 

camera-calibrated model [4] integrates an ASM propagator with 

two U-Net architectures. The model accurately predicts the 

reconstructed POH for new input scenes, applying learned 

corrections. Its parameters are frozen and integrated with the 

proposed model, allowing POH generation and compression 

without additional feedback from the physical display. 

3. Implementation 
 

Software: The model was trained using the DIV2K dataset [13], 

consisting of 800 Full HD images with data augmentation through 

flipping. Images were preprocessed to 1,600×880 pixels, then zero-

padded to Full HD resolution. We trained our network in two 

stages, pre-training for POH generation over 40 epochs (learning 

rate 1×10−4) without latent quantization and full network training 

for compression over 60 epochs, optimizing a joint rate-distortion 

loss with quantized latent representation. The camera-calibrated 

wave propagation model was trained for 50 epochs (learning rate 

5× 10−4 ). Compression was trained with various λ values, 

balancing bitrate and quality (λ ranges: {0.0005, 0.002, 0.007, 0.02, 

0.08} for proposed-small). The model was compared against 

H.266/VVC [14] in intra-mode with RGB444 input and QPs {25, 

30, 35, 40}, using 100 test images from the DIV2K validation 

dataset. Experiments used an SLM pixel pitch of 8 μm, 

wavelengths of 639 nm, 524.9 nm, and 445.8 nm, and a 10 cm 

propagation distance. All tests ran on an NVIDIA RTX 4090 GPU, 

with accurate inference times measured using GPU 

synchronization. 

Hardware: Our benchtop holographic display prototype was 

constructed to validate the proposed method as shown in Figure 2. 

Generated POHs were displayed on a phase-only SLM 

(HOLOEYE Pluto 2) with a resolution of 1,080×1,920 pixels and 

an 8 μm pixel pitch. The propagation distance was set to 10 cm, 

based on prior studies. Illumination was provided by an RGB laser 

(Fisba ReadyBeam) directed through optical elements, including a 

collimating lens, ND filter, polarizer, and beam splitter, before 

incidence on the SLM. Modulated wavefronts were captured by a 

FLIR Grasshopper 3 sensor (1,200×1,920, RAW16). The prototype 

excluded conventional optical filters to evaluate challenging 

scenarios, utilizing a Nikon 50 mm eyepiece and a Canon 35 mm 

camera lens. Calibration procedures were performed for the SLM 

and camera, including voltage response tuning and image 

alignment via affine transformations. For this proof-of-concept, a 

green laser (524.9 nm) was used, with full-color displays. 

4. Results 
Figure 4 highlights the visual quality comparison, where the 

proposed model significantly outperforms DPRC [8] at similar bpp 

(bits per pixel), preserving more high-frequency details. It achieves 

substantial bitrate savings over NHVC [9] while maintaining 

comparable image quality, especially in sharpness and detail 

retention. Compared to the HoloNet [3] + VVC scheme, the model 

Figure 2 Overview of the proposed network, which inputs the 

target amplitude and outputs a phase-only hologram. The 

navy-blue arrow (top) represents the encoding process on 

the cloud/server side, and the orange arrow (bottom) 

indicates the decoding process on the edge device. The 

hyperprior encoder and decoder [11], used in the actual 

implementation for compression, have been omitted from the 

figure for simplicity, focusing on the primary flow of the 

encoder, decoder, and arithmetic encoder/decoder. 

Figure 3 Holographic display prototype used in our 
experiments. Notably, the setup excludes optical filtering 
components, which are typically positioned between the SLM 
and the eyepiece, to explore unfiltered holography scenarios. 
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provides superior visual quality at lower bitrates with fewer 

compression artifacts. Zoomed-in areas show that the proposed 

method effectively minimizes distortion, delivering clearer and 

more detailed reconstructions. 

Rate-distortion (RD) curves illustrate the trade-off between image 

quality and compression efficiency, with higher PSNR and SSIM 

values at the same bpp reflecting better performance. In Figure 5, 

the RD-curve comparison demonstrates that the proposed models 

consistently outperform existing methods, achieving bitrates from 

0.065 bpp (compression ratio ×369) to 1.186 bpp (compression 

ratio ×20) with PSNR values ranging from 25.6 dB to 32.4 dB. At 

lower bitrates, both networks, proposed and proposed-small, 

exhibit similar performance, while at higher bitrates, our model 

achieves superior quality due to its larger feature capacity. 

In Table 1, BD-rate calculations confirm significant bitrate savings, 

with proposed models achieving a -72.56% and a -74.32% 

reduction compared to baseline methods like DPRC and NHVC. 

The models also demonstrate substantial improvements in 

decoding time, with proposed-small achieving 45 ms per channel 

(134 ms for three channels), significantly outperforming DPRC and 

NHVC. This balance of low bitrate, high quality, and fast decoding 

makes the proposed methods particularly effective for hologram 

generation and compression. 

Table 1. Rate distortion and model decoding time 
comparison between neural network-based compression 
models. We compare decoding time for a single channel, 
with three-channel joint decoding time for our proposed 

model shown in (∙). 

Method BD-rate (%) 
Decoding  

Time (ms) 

DPRC 0.00 215 

NHVC -49.38  

Proposed-small -72.56 45 (134) 

Proposed -74.32 83 (250) 

 

Figure 6 shows experimental results of holograms at a different 

compression rate, with ratios ranging from ×67 to ×237 for the first-

row images and ×31 to ×118 for the second-row images. Despite 

high compression, the optical captures maintain high fidelity, 

demonstrating effective compression and quality preservation. In 

this experiment, we used single-color channel optimization with 

half the feature channels of proposed-small, with potential for 

higher efficiency through joint RGB optimization. 

5. Conclusion 

In this work, we have proposed a neural network-based framework 

for efficiently generating and compressing POHs with RGB input. 

By leveraging a pre-trained, camera-calibrated wave propagation 

model, our approach addresses the practical challenges of real-

world holographic displays, compensating for hardware 

imperfections and ensuring high display fidelity. Importantly, the 

proposed method achieves these results without relying on optical 

filters, enabling a compact and filter-free design that is particularly 

advantageous for VR/AR applications, where form factors play a 

critical role. With a decoding time of approximately 40ms per color 

channel, the proposed framework is well-suited for real-time 

holography on edge devices, providing a balance of high 

performance and efficiency, making it a promising solution for 

next-generation holographic systems that require practical 

deployment in compact VR/AR environments. 

Looking ahead, this work establishes a foundation for future 

advancements in holography. Improving the learned camera-

calibrated model to better address mismatches in unfiltered 

Figure 5 Rate-distortion (RD) curve comparison of POH 
compression methods. The proposed model is evaluated 
against various phase hologram compression neural 
networks and hologram generation combined with state-of-
the-art video codecs (VVC), using PSNR for reconstruction 
quality and bpp for compression efficiency. 

Figure 4 Visual and quantitative comparison of POH compression methods across two scenes. Each row presents different 
methods with their corresponding PSNR and bpp values. Red boxes highlight zoomed-in regions to emphasize visual details. 
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environments could further enhance display fidelity. Integrating 

our approach with hologram video compression techniques [9], 

offers the potential for efficient streaming and rendering of 

holographic videos. Additionally, expanding the model to support 

3D holography by training with diverse 3D datasets could 

significantly broaden its applicability, providing enhanced depth 

perception and immersive experiences in advanced VR/AR 

systems. By addressing computational efficiency, display fidelity, 

and design constraints, this work contributes to bridging the gap 

between holographic technology and its practical deployment, 

laying the groundwork for future innovations in holographic 

displays. 
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Figure 6 Experimental results of the proposed model tested on a benchtop holographic display with only the green laser source 
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